编辑
2021-02-27
数学
0
请注意,本文编写于 1512 天前,最后修改于 251 天前,其中某些信息可能已经过时。

目录

圆锥曲线垂直弦交点连线过定点
椭圆
命题描述
证明
双曲线
命题描述
证明
抛物线
命题描述
证明
花絮
参考资料

圆锥曲线垂直弦交点连线过定点

椭圆

命题描述

若直线ll与椭圆C:x2a2+y2b2=1 C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1交于A,B,两点,P(x0,y0)C(x_0,y_0)\in C,且PAPBPA\perp PB,则ll过定点(a2b2a2+b2x0,a2b2a2+b2y0)\Big (\frac{a^2-b^2}{a^2+b^2}x_0,-\frac{a^2-b^2}{a^2+b^2}y_0\Big )

证明

A(x1,y1)A(x_1,y_1) , B(x2,y2)B(x_2,y_2) , l:y=kx+ml:y=kx+m

先看条件,有一个垂直,用上再说

PAPB\because PA \perp PB
kPAkPB=1y0y1x0x1y0y2x0x2=1\therefore k_{PA}\cdot k_{PB}=-1 \Rightarrow \frac{y_0-y_1}{x_0-x_1}\cdot \frac{y_0-y_2}{x_0-x_2}=-1

整理,得:

x02(x1+x2)x0+x1x2+y02(y1+y2)y0+y1y2=0(1)x_0^2-(x_1+x_2)x_0+x_1x_2+y_0^2-(y_1+y_2)y_0+y_1y_2=0 \tag{1}

按照惯例,联立C,lC,l

{x2a2+y2b2=1y=kx+b(b2+a2k2)x2+2kma2x+a2(m2b2)=0\begin{cases} \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\\\\ y=kx+b \end{cases} \Rightarrow (b^2+a^2k^2)x^2+2kma^2x+a^2(m^2-b^2)=0
x1+x2=2kma2b2+a2k2,x1x2=a2(m2b2)b2+a2k2\therefore x_1+x_2=-\frac{2kma^2}{b^2+a^2k^2},x_1x_2=\frac{a^2(m^2-b^2)}{b^2+a^2k^2}

看看还漏了什么...还有一个A,BA,Bll上没用

A,BlA,B\in l

{y1=kx1+my2=kx2+m{y1+y2=k(x1+x2)+2m=2mb2b2+a2k2y1y2=k2x1x2+km(x1+x2)+m2=b2(m2a2k2)b2+a2k2\begin{cases} y_1=kx_1+m\\\\ y_2=kx_2+m\\ \end{cases} \therefore \begin{cases} &y_1+y_2=k(x_1+x_2)+2m=\frac{2mb^2}{b^2+a^2k^2}\\\\ &y_1y_2=k^2x_1x_2+km(x_1+x_2)+m^2=\frac{b^2(m^2-a^2k^2)}{b^2+a^2k^2} \end{cases}

代入(1)(1)

x02+2kma2b2+a2k2x0+a2(m2b2)b2+a2k2+y022mb2b2+a2k2y0+b2(m2a2k2)b2+a2k2=0x_0^2+\frac{2kma^2}{b^2+a^2k^2}\cdot x_0+\frac{a^2(m^2-b^2)}{b^2+a^2k^2}+y_0^2-\frac{2mb^2}{b^2+a^2k^2}\cdot y_0+\frac{b^2(m^2-a^2k^2)}{b^2+a^2k^2}=0

去分母,得

(b2+a2k2)(x02+y02)+(2kma2)x0+a2(m2b2)+b2(m2a2k2)2mb2y0=0(b^2+a^2k^2)(x_0^2+y_0^2)+(2kma^2)x_0+a^2(m^2-b^2)+b^2(m^2-a^2k^2)-2mb^2y_0=0

展开之后有些项长的很像完全平方 按完全平方整理,得

a2(k2x02+2kmx0+m2)+b2(m22my0+y02)+b2x02a2b2+a2k2y02a2b2k2=0a^2(k^2x_0^2+2kmx_0+m^2)+b^2(m^2-2my_0+y_0^2)+b^2x_0^2-a^2b^2+a^2k^2y_0^2-a^2b^2k^2=0

a2(kx0+m)2+b2(y0m)2+b2x02a2b2+a2k2y02a2b2k2=0(2)a^2(kx_0+m)^2+b^2(y_0-m)^2+b^2x_0^2-a^2b^2+a^2k^2y_0^2-a^2b^2k^2=0 \tag{2}

后面那一坨东西看着就恶心,能不能干掉呢?

这不还有一个PPCC上没用嘛~

PCP \in C

b2x02+a2y02=a2b2b^2x_0^2+a^2y_0^2=a^2b^2

b2x02a2b2+a2k2y02a2b2k2=a2y02+k2(a2y02a2b2)=a2y02b2k2x02b^2x_0^2-a^2b^2+a^2k^2y_0^2-a^2b^2k^2=-a^2y_0^2+k^2(a^2y_0^2-a^2b^2)=-a^2y_0^2-b^2k^2x_0^2

代入(2)(2),整理,得

a2[(kx0+m)2y02]=b2[k2x02(y0m)2]a^2[(kx_0+m)^2-y_0^2]=b^2[k^2x_0^2-(y_0-m)^2]

这东西竟然是一个平方差!别急着约分,看看等不等于0先

Pl\because P \notin l

kx0+my00\therefore kx_0+m-y_0 \neq 0

然后就可以开心地约分了!

a2(kx0+m+y0)=b2(kx0+y0m)a^2(kx_0+m+y_0)=b^2(kx_0+y_0-m)

m=(b2a2)(y0+kx0)a2+b2m=\frac{(b^2-a^2)(y_0+kx_0)}{a^2+b^2}

l:y=kx+(b2a2)(y0+kx0)a2+b2l: y=kx+\frac{(b^2-a^2)(y_0+kx_0)}{a^2+b^2}

整理,得

k[x+(b2a2)x0a2+b2]=y(b2a2)y0a2b2k\bigg [ x+\frac{(b^2-a^2)x_0}{a^2+b^2} \bigg ]=y-\frac{(b^2-a^2)y_0}{a^2-b^2}

ll过定点:

(a2b2a2+b2x0,b2a2a2+b2y0)\bigg (\frac{a^2-b^2}{a^2+b^2}x_0,\frac{b^2-a^2}{a^2+b^2}y_0 \bigg )

单独验证横线和竖线,符合上式 其实是我懒得写

Q.E.D.Q.E.D.

双曲线

命题描述

若直线ll与双曲线C:x2a2y2b2=1C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1交于A,BA,B两点,P(x0,y0)CP(x_0,y_0) \in CPBPBPB \perp PB,则ll过定点(a2+b2a2b2x0,a2+b2a2b2y0)\Big ( \frac{a^2+b^2}{a^2-b^2}x_0,-\frac{a^2+b^2}{a^2-b^2}y_0 \Big)

证明

A(x1,y1),B(x2,y2),l:y=kx+mA(x_1,y_1),B(x_2,y_2),l:y=kx+m

照例联立C,lC,l

{b2x2a2y2a2b2=0y=kx+m(b2a2k2)x22akmxa2b2a2m2=0\begin{cases} b^2x^2-a^2y^2-a^2b^2=0\\\\ y=kx+m \end{cases} \Rightarrow (b^2-a^2k^2)x^2-2a^kmx-a^2b^2-a^2m^2=0
x1+x2=2a2kmb2a2k2,x1x2=a2b2a2m2b2a2k2\therefore x_1+x_2=\frac{2a^2km}{b^2-a^2k^2},x_1x_2=\frac{-a^2b^2-a^2m^2}{b^2-a^2k^2}

接下来就是垂直了,老是用斜率没意思,用一手向量点乘等于0

PAPBPA \perp PB

(x0x1)(x0x2)+(y0y1)(y0y2)=0(x_0-x_1)(x_0-x_2)+(y_0-y_1)(y_0-y_2)=0

由于A,BA,Bll上,故

y1=kx1+my2=kx2+m\begin{aligned} y_1=kx_1+m\\\\ y_2=kx_2+m \end{aligned}

故上式可化为

(x0x1)(x0x2)+[(y0m)kx1][(y0m)kx2]=0(x_0-x_1)(x_0-x_2)+[(y_0-m)-kx_1][(y_0-m)-kx_2]=0

x_0^2+(y_0-m)^2-\[x_0+k(y_0-m)\](x_1+x_2)+(k^2+1)x_1x_2=0

代入韦达定理,得

x02+(y0m)22a2km[x0+k(y0m)]b2a2k2(k2+1)(a2b2+a2m2)b2a2k2=0x_0^2+(y_0-m)^2-\frac{2a^2km[x_0+k(y_0-m)]}{b^2-a^2k^2}-\frac{(k^2+1)(a^2b^2+a^2m^2)}{b^2-a^2k^2}=0

去分母,得

(b2a2k2)x02+(b2a2k2)(y0m)22a2km[x0+k(y0m)](k2+1)(a2b2+a2m2)=0(b^2-a^2k^2)x_0^2+(b^2-a^2k^2)(y_0-m)^2-2a^2km[x_0+k(y_0-m)]-(k^2+1)(a^2b^2+a^2m^2)=0

隐隐约约看到写完全平方的影子,找出来写在一起:

a2(k2x02+2kmx0+m2)+b2x02a2k2[(y0m)2+2m(y0m)+m2]+b2(y0m)2k2a2b2a2b2=0-a^2(k^2x_0^2+2kmx_0+m^2)+b^2x_0^2-a^2k^2[(y_0-m)^2+2m(y_0-m)+m^2]+b^2(y_0-m)^2-k^2a^2b^2-a^2b^2=0

然后就可以化成平方啦,整体代入不展开真是个好习惯~

a2(kx0+m)2+b2x2a2k2y02+b2(y0m)2k2a2b2a2b2=0(1)-a^2(kx_0+m)^2+b^2x^2-a^2k^2y_0^2+b^2(y_0-m)^2-k^2a^2b^2-a^2b^2=0 \tag{1}

PCP \in C得:b2x02a2y02a2b2=0b^2x_0^2-a^2y_0^2-a^2b^2=0

a2y02=a2b2b2x02a2b2=a2y02b2x02\begin{aligned} -a^2y_0^2=a^2b^2-b^2x_0^2\\\\ -a^2b^2=a^2y_0^2-b^2x_0^2 \end{aligned}

代入(1)(1),得

a2(kx0+m)2+b2x02+k2a2b2k2b2x02+b2(y0m)2k2a2b2+a2y02b2x02=0a2(kx0+m)2+b2(y0m)2k2b2x02+a2y02=0a2[y0(kx0+m)2]+b2[(y0m)2k2x02]=0\begin{aligned} &-a^2(kx_0+m)^2+b^2x_0^2+k^2a^2b^2-k^2b^2x_0^2+b^2(y_0-m)^2-k^2a^2b^2+a^2y_0^2-b^2x_0^2=0\\\\ &\Leftrightarrow -a^2(kx_0+m)^2+b^2(y_0-m)^2-k^2b^2x_0^2+a^2y_0^2=0\\\\ &\Leftrightarrow a^2[y_0-(kx_0+m)^2]+b^2[(y_0-m)^2-k^2x_0^2]=0 \end{aligned}

然后就来到了喜闻乐见的平方差环节

a2(y0+kx0+m)(y0kx0m)+b2(y0m+kx0)(y0mkx0)=0a^2(y_0+kx_0+m)(y_0-kx_0-m)+b^2(y_0-m+kx_0)(y_0-m-kx_0)=0

还是要按照惯例判断是否为零

PC\because P \notin C

y0kx0m0\therefore y_0-kx_0-m \neq 0

然后就可以约分啦~

a2(y0+kx0+m)+b2(y0+kx0m)=0a^2(y_0+kx_0+m)+b^2(y_0+kx_0-m)=0
m=(a2+b2)y0+(a2+b2)kx0b2a2=(a2+b2)(kx0+y0)a2b2\Rightarrow m=\frac{(a^2+b^2)y_0+(a^2+b^2)kx_0}{b^2-a^2}=-\frac{(a^2+b^2)(kx_0+y_0)}{a^2-b^2}

l:y=kx(a2+b2)(kx0+y0)a2b2l: y=kx-\frac{(a^2+b^2)(kx_0+y_0)}{a^2-b^2}

单独把kk拎出来

y+y0(a2+b2)a2b2=k(xx0(a2+b2)a2b2)y+\frac{y_0(a^2+b^2)}{a^2-b^2}=k\bigg (x-\frac{x_0(a^2+b^2)}{a^2-b^2}\bigg )

ll过定点:

(a2+b2a2b2x0,a2+b2a2b2y0)\bigg ( \frac{a^2+b^2}{a^2-b^2}x_0,-\frac{a^2+b^2}{a^2-b^2}y_0\bigg )

单独验证横线和竖线,符合上式

Q.E.D.Q.E.D.

抛物线

命题描述

若直线ll与抛物线C:y2=2pxC: y^2=2px交于A,BA,B两点,P(x0,y0)CP(x_0,y_0)\in C,且PAPBPA \perp PB,则ll过定点(2p+x0,y0)(2p+x_0,-y_0)

证明

整完双曲线以为抛物线有手就行,然鹅...这真是一个悲伤的故事...

A(x1,y1),B(x2,y2),l:x=my+nA(x_1,y_1),B(x_2,y_2),l:x=my+n

横抛物线肯定是这样设直线简单啦~

照例联立C,lC,l

{y2=2pxx=my+ny2=2pmy2pn=0\begin{cases} y^2=2px\\\\ x=my+n \end{cases} \Rightarrow y^2=2pmy-2pn=0
y1+y2=2pm,y1y2=2pn\therefore y_1+y_2=2pm,y_1y_2=-2pn

照例向量点乘等于0

PAPB\because PA \perp PB

(y0y1)(y0y2)+(x0x1)(x0x2)=0\therefore (y_0-y_1)(y_0-y_2)+(x_0-x_1)(x_0-x_2)=0

由于A,BA,Bll

x1=my1+nx2=my2+n\begin{aligned} x_1=my_1+n\\\\ x_2=my_2+n \end{aligned}

代入上式,得

y_0^2+(x_0-n)^2-\[y_0+m(x_0-n)\](y_1+y_2)+(m^2+1)y_1y_2=0

代入韦达定理,得

y02+(x0n)22pm[y0+m(x0n)]2pm2n2pn=0y022pmy0+(x0n)22pm2x02pn=0\begin{aligned} &y_0^2+(x_0-n)^2-2pm[y_0+m(x_0-n)]-2pm^2n-2pn=0\\\\ &\Leftrightarrow y_0^2-2pmy_0+(x_0-n)^2-2pm^2x_0-2pn=0 \end{aligned}

PC\because P \in C

y02=2px0\therefore y_0^2=2px_0

代入上式,然后是一通十分Genius的操作,注意,核心所在! 我是怎么想出来的?

y022pmy0+(x0n)2m2y02pn=0(1m2)y022pmy0+(x0n)22pn=0(1m2)y022pmy0p2+(x0n)22pn+p2=0妙不可言![(1+m)y0+p][(1m)y0p]+(xn+p)22px0=0(y0+my0+p)(y0my0p)+(x0n+p)2y02=0y02(my0+p)2+(x0n+p)2y02=0(x0m+p)2(my0+p)2=0\begin{aligned} &y_0^2-2pmy_0+(x_0-n)^2-m^2y_0-2pn=0\\\\ &\Leftrightarrow (1-m^2)y_0^2-2pmy_0+(x_0-n)^2-2pn=0\\\\ &\Leftrightarrow (1-m^2)y_0^2-2pmy_0-p^2+(x_0-n)^2-2pn+p^2=0 \leftarrow 妙不可言!\\\\ &\Leftrightarrow [(1+m)y_0+p][(1-m)y_0-p]+(x-n+p)^2-2px_0=0\\\\ &\Leftrightarrow (y_0+my_0+p)(y_0-my_0-p)+(x_0-n+p)^2-y_0^2=0\\\\ &\Leftrightarrow y_0^2-(my_0+p)^2+(x_0-n+p)^2-y_0^2=0\\\\ &\Leftrightarrow (x_0-m+p)^2-(my_0+p)^2=0 \end{aligned}

然后就又到了喜闻乐见的平方差环节

(x0n+p+my0+p)(x0n+pmy0p)=0(x_0-n+p+my_0+p)(x_0-n+p-my_0-p)=0

(x0n+my0+2p)(x0nmy0)=0(x_0-n+my_0+2p)(x_0-n-my_0)=0

剩下的就是常规操作啦

PC\because P \notin C

x0nmy00\therefore x_0-n-my_0 \neq 0

x0n+my0+2p=0n=my0+x0+2p\begin{aligned} x_0-n+my_0+2p=0\\\\ \Rightarrow n=my_0+x_0+2p \end{aligned}

然后就可以愉快地写出直线的方程

l:x=my+my0+x0+2pl: x=my+my_0+x_0+2p

还是把mm单独拿出来

x(x0+2p)=m(y+y0)x-(x_0+2p)=m(y+y_0)

ll过定点:

(x0+2p,y0)(x_0+2p,-y_0)

单独验证横线和竖线,符合上式

Q.E.D.Q.E.D.

花絮

看到这里,你一定很好奇我到底算了多久吧?你一定很好奇我是怎么想到做法的吧?不如来看看这4大张草稿纸吧(笑~)

椭圆草稿纸

双曲线草稿纸

抛物线草稿纸,附送大问号一枚

太激动了又验算了一遍

参考资料

椭圆证明来自:爱数学的筑梦人:曲线上定点引垂直弦,交点连线过定点

封面图:知乎:【解析几何】什么是极线,好吃吗?

本文作者:GBwater

本文链接:

版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!